Carilahsolusi dari SPL dengan menggunakan Metode Crammer dan tentukan nilai untuk x,y, dan z! 5. Matriks P dan Q adalah matriks ordo 2x2 seperti di bawah. Agar determinan matriks P sama dengan dua kali determinan Q, maka nilai x yang memenuhi adalah P = Q = − 6. Matriks A dan B adalah matriks ordo 2x2 seperti di bawah. Agar determinan Selanjutnya pembahasan kita akan berlanjut ke invers matriks. Matriks Minor Diketahui sebuah matriks A dengan ordo 3 seperti terlihat di bawah. Matriks minor adalah matriks yang diperoleh dengan cara menghilangkan baris ke-i dan kolom ke-j dari matriks A sehingga diperoleh matriks minor berordo 2 seperti persamaan di bawah. Matriks-matriks minor di atas digunakan untuk left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end Sebelumkita bahas tentang cara mencari minor matriks ordo 3x3, Minor matriks adalah determinan matriks bagian dari matriks yang diperoleh dengan cara menghilangkan elemen pada baris tertentu dan elemen pada kolom tertentu. Kalo cara mencari minor matriks ordo 4x4 gimana. Reply Delete. 1019. Metode Numerik. Solusi SPL "Determinan". Determinan. Untuk setiap matriks bujur sangkar A terdapat nilai karakteristi yang dikenal sebagai determinan, biasa ditulis det (A) atau . Determinan matriks A ditulis sebagai. detA =. Jika matriks A dengan det (A) = 0, A disebut matriks singular. Sebaliknya, jika det (A)0, A disebut matriks sMkG. Uploaded byShiva Chairunnisa 100% found this document useful 1 vote3K views7 pagesCopyright© © All Rights ReservedShare this documentDid you find this document useful?Is this content inappropriate?Report this Document100% found this document useful 1 vote3K views7 pagesDeterminan Matriks Ordo 4x4 Menggunakan Ekspansi KofaktorUploaded byShiva Chairunnisa Full descriptionJump to Page You are on page 1of 7Search inside document You're Reading a Free Preview Pages 4 to 6 are not shown in this preview. Buy the Full Version Reward Your CuriosityEverything you want to Anywhere. Any Commitment. Cancel anytime. Minggu, 17 Oktober 2021 Edit Pada video kali ini akan dibahas mengenai matrix 4×4 di sini akan dibahas step by step mengenai cara mencari determinan matrix 4×4 menggunakan metode. Nah, jika suatu matriks memiliki invers pada penjelasan sebelumnya tentang determinan matriks, kamu udah tau kan bagaimana cara mencari kofaktor dari suatu matriks. Langkah pertama, yang perlu diperhatikan dalam menyelesaikan soal ini adalah kita cari cara yang termudah dalam. Hafalkan rumus kofaktornya terlebih dahulu. Menentukan determinan matriks persegi 4x4 dapat dilakukan dengan menggunakan metode ekspansi kofaktor. Invers matriks dengan ekspansi kofaktor. Cara menyelesaikan soal determinan matriks berordo 4x4 dengan metode kofaktor. Langkah pertama, yang perlu diperhatikan dalam menyelesaikan soal ini adalah kita cari cara yang termudah dalam. Matriks a merupakan matriks dengan ordo 2 × 2 memiliki elemen a dan d yang terletak pada diagonal utama, sedangkan b dan c terletak pada diagonal kedua. Tentukan determinan matriks ordo 2 x 2. Pertama kita cari dahulu adjoinya dengan cara cepat. Halo semuanya saya arvel dan teman saya billie di video ini kita akan menjelaskan step by step cara mencari kofaktor dan determinan dari matriks 4x4. Cara menyelesaikan soal determinan matriks berordo 4x4 dengan metode kofaktor. Dengan cara ekspansi kofaktor , atau pakai sifat sifat determinan. Determinan matriks 4×4 dengan kofaktor. Aljabar Linear » Matriks › Menghitung Determinan Matriks Menggunakan Metode Ekspansi Kofaktor Matriks Pada artikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Oleh Tju Ji Long Statistisi Kita telah mempelajari dua cara menghitung determinan matriks. Pertama dengan menggunakan metode Sorrus dan kedua dengan menggunakan operasi baris elementer. Pada artikel ini, kita akan membahas cara lain untuk memperoleh determinan suatu matriks yakni dengan menggunakan metode ekspansi kofaktor. Ada dua istilah yang perlu dipahami terlebih dahulu yakni minor entri dan kofaktor entri. Kita definisikan sebagai berikut. Definisi Jika \A\ adalah matriks kuadrat dengan entri atau elemennya \a_{ij}\, maka yang disebut minor entri \a_{ij}\ atau dinotasikan dengan \M_{ij}\ adalah determinan submatriks setelah baris ke \i\ dan kolom ke \j\ dicoret dari \A\. Bilangan \-1^{i + j} M_{ij}\ yang dinotasikan dengan \C_{ij}\ dinamakan kofaktor entri \a_{ij}\. Untuk lebih jelasnya, perhatikan beberapa contoh soal berikut. Contoh 1 Misalkan terdapat matriks berikut. Tentukan minor entri dan kofaktor dari \a_{11}\ dan \a_{32}\. Pembahasan Dari definisi yang diberikan di atas, maka minor entri \a_{11}\ adalah Perhatikan bahwa di sini kita mencoret baris dan kolom pertama dari matriks A sehingga diperoleh submatriks baru berukuran 2 x 2. Determinan dari submatriks yang diperoleh disebut minor entri \a_{11}\. Dengan demikian, kofaktor \a_{11}\ yaitu Hal yang sama dapat kita lakukan untuk mencari minor entri \a_{32}\, yakni dan kofaktor \a_{32}\ yaitu Perhatikan bahwa kofaktor dan minor elemen \a_{ij}\ hanya berbeda dalam tandanya, yakni, \C_{ij} = ±M_{ij}\. Cara cepat untuk menentukan penggunaan tanda + atau tanda – berasal dari kenyataan bahwa penggunaan tanda yang menghubungkan \C_{ij}\ dan \M_{ij}\ berada dalam baris ke \i\ dan kolom ke \j\ dari susunan Misalnya, \C_{21} = -M_{21}\, \C_{12} = -M_{12}, C_{22} = M_{22}\, dan seterusnya. Sekarang kita akan mengaitkan apa yang telah kita pelajari di atas mengenai minor entri dan kofaktor entri dengan pencarian determinan suatu matriks. Misalkan diketahui matriks A berukuran \3 × 3\ sebagai berikut \[ A = \left[ {\begin{array}{cc} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \\ \end{array} } \right] \] Kita tahu bahwa determinan dari matriks A dapat ditentukan dengan Rumus Sorrus, yakni yang mana dapat dituliskan kembali sebagai Karena pernyataan-pernyataan dalam kurung tak lain adalah kofaktor-kofaktor \C_{11}, C_{21}\, dan \C_{31}\, maka kita peroleh 1 Persamaan 1 memperlihatkan bahwa determinan A dapat dihitung dengan mengalikan entri-entri dalam kolom pertama A dengan kofaktor-kofaktornya dan kemudian menjumlahkan hasil kalinya. Metode menghitung detA ini dinamakan ekspansi kofaktor sepanjang kolom pertama A. Contoh 2 Menghitung Determinan Misalkan diketahui matriks A sebagai berikut. Hitunglah \\detA\ dengan metode ekspansi kofaktor sepanjang kolom pertama A. Pembahasan Dari persamaan 1 diperoleh Dengan cara yang sama seperti kita lakukan untuk memperoleh persamaan 1, determinan matriks A dapat dihitung dengan rumus berikut 2 Perhatikan bahwa dalam setiap persamaan semua entri-entri dan kofaktor berasal dari baris atau dari kolom yang sama. Persamaan ini dinamakan ekspansi-ekspansi kofaktor \\detA\. Hasil-hasil yang baru saja kita berikan untuk matriks \3×3\ membentuk kasus khusus dari teorema umum berikut Teorema Determinan matriks \A\ yang berukuran \n × n\ dapat dihitung dengan mengalikan entri-entri dalam suatu baris atau kolom dengan kofaktor-kofaktornya dan menambahkan hasil-hasil kali yang dihasilkan; yakni, untuk setiap \1≤i≤n\ dan \1≤j≤n\, maka dan Contoh 3 Menghitung Determinan Tinjaulah matriks A berikut. Hitunglah detA dengan menggunakan ekspansi kofaktor sepanjang baris pertama. Pembahasan Dari persamaan 2 baris kedua diperoleh Ini sesuai dengn hasil yang kita peroleh pada contoh kita sebelumnya. Pada contoh ini kita tak perlu menghitung kofaktor akhir, karena kofaktor tersebut dikalikan oleh nol. Umumnya, strategi terbaik untuk menghitung determinan dengan menggunakan ekpansi kofaktor adalah dengan mengekspansikannya sepanjang baris atau kolom yang mempunyai bilangan nol yang terbanyak. Ekspansi kofaktor dan operasi baris atau operasi kolom kadang-kadang dapat digunakan bersama-sama untuk memberikan metode yang efektif untuk menghitung determinan. Contoh berikut melukiskan gagasan ini. Contoh 4 Menghitung Determinan Hitunglah \\detA\ di mana Pembahasan Dengan menambahkan perkalian yang sesuai dari baris kedua pada baris selebihnya, kita dapatkan Sumber Anton, Howard & Chris Rorres. 2014. Elementary linear algebra applications version, 11th edition. John Wiley & Sons, Inc Hoboken, New Jersey. Jika Anda merasa artikel ini bermanfaat, bantu klik tombol suka di bawah ini dan tuliskan komentar Anda dengan bahasa yang sopan.

determinan matriks ordo 4x4 metode kofaktor